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A method is introduced for overcoming the velocity space lilamentation problem which 
occurs in solutions of the VlasovPMaxwell system of equations, This method is shown to 
introduce no error in the evolution of the VlasovvMaxwell solutions, to leave the field portion 
of the solutions unmodified, and to yield velocity-tiltered distribution functions which do not 
carry fdamentation in the velocity variable. It is conjectured that the filtered distributions do 
not develop spatial tilamentation as well. It is shown that the method can be applied to the 
most general three-dimensional, electromagnetic Vlasov-Maxwell model. Several examples are 
presented in which comparisons between filtered and unfiltered solutions are made. These are 
numerical solutions of a FourierrFourier transformed one-dimensional electron plasma 
model. In the comparisons, which are favorable, reductions in run time by factors of 
approximately ten and in necessary machine memory by factors of twenty to thirty are 
demonstrated. ( 1 1987 Academic Press. Inc 

I. INTR~OUCTI~N 

In many situations a collisionless plasma model is an excellent approximation. In 
that approximation the Vlasov equation describes the evolution of the particle dis- 
tribution in phase space; it can be written dF/dt =O. The distribution function is 
unchanged along the characteristics generated by the particle equations of motion. 
An initial distribution may be mixed by the particle motion into very line structures 
in phase space but no relaxation between neighboring elements can occur. Con- 
sequently, even a smooth initial distribution can be mixed into a distribution with 
small scales and large derivatives. 

For example, consider an initial value, free streaming (field =O), solution of the 
one-dimensional Vlasov equation, 

aF c?F 
z+u-&=O. 

If the initial distribution is given by F(x, u, 0) = G(x, u), then the solution of Eq. (1) 
is F(x, u, t) = G(x - ut, u). The free streaming particle motion shears the initial 
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phase space distribution as time increases; initial spatial structure is stretched into 
fine scale structure in velocity and the derivative of F with respect to velocity, 

aF WCC, 0) -=- 
au a0 

_ t aG(x - ot, u) 

c=.r-ar ax ’ 

grows unbounded. 
In principle, this “Iilamentation” of the distribution function can lead to large 

derivatives in both the spatial and velocity variables. Denavit [l] has given an 
example which exhibits this behavior; it is an electron gas trapped in the potential 
trough of an external electric field. However. in most cases it appears that large 
velocity derivatives develop first [2]. 

“Velocity space filamentation” has been a well-known problem in numerical 
plasma simulations. Early Vlasov simulations [3, 41 based on direct differencing 
techniques suffered serious degradation after short integration times due to velocity 
space filamentation. Later Vlasov simulations in which the velocity space was Her- 
mite transformed [S, 6, 7, 8, 9, 10, 111, again because of the velocity derivative 
growth, were limited to integration times which depended on the number of 
retained Hermite polynomials [S, 5, 61. It was found that truncation of the 
polynomial expansion leads to an apparent numerical instability for larger times 
which Joyce, Knorr, and Meier [ 121 showed is actually a recurrence phenomenon 
associated with the attempt to represent a continuous eigenspectrum by a discrete 
finite spectrum. Knorr [ 131 introduced an alternative Vlasov simulation method in 
which the velocity space is Fourier transformed. This method has been used exten- 
sively [14, 15, 16, 10, 171 and has been discussed by Armstrong et al. [2] as a 
solution of the velocity space filamentation problem. However, in their discussion 
Armstrong et al. warned of the loss of information which results when this method 
is used, as it is usually, on a finite interval in the Fourier variable complementary to 
the velocity variable. Klimas [ 171 investigated this issue further using an interval in 
the Fourier variable which expanded with the flow of information and showed that 
the formation of significant velocity space hlamentation quickly leads to an intrac- 
table computational problem unless the loss of information is accepted. The impact 
of this loss of information on the accuracy of the computed solution is unknown. It 
is clear if echo effects [ 18, 191 or velocity space filamentation are important 
features of the solution then the loss of information must be serious. 

Various attempts have been made to overcome the velocity space hlamentation 
problem. Grant and Feix [S, 61 added a weak Fokker-Planck collision term to the 
right side of the Vlasov equation to relax the fine velocity space structures which 
develop otherwise. Joyce et al. [ 121 and Knorr [ 1 l] imposed small imaginary 
parts on the eigenvalues in their Hermite polynomial expansions to damp away the 
recurrence phenomena associated with truncation of the expansions. Joyce et al. 
[ 121 also considered adding a collision term to the Vlasov equation to damp the 
recurrence phenomena. Cheng and Knorr [20] introduced a filtration method for 
removing the filamentation from the velocity distribution. They periodically stop- 
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ped their computation, filtered the velocity distribution through a convolution 
integration with a filter function which was chosen to leave the low order moments 
of the distribution, of physical interest, unaffected, and then restarted their com- 
putation using the filtered distribution for new initial data. All of the above are 
selective mechanisms which act most strongly on those portions of the velocity dis- 
tribution with large velocity derivatives to reduce the derivatives; they can extend 
the validity of computed solutions somewhat, but eventually the errors which these 
methods introduce accumulate and then dominate. 

The method which is investigated in this paper for overcoming the velocity space 
lilamentation problem was first suggested by Kellogg [4]; it is related to the 
filtration method of Cheng and Knorr [20]. This method is different in that it 
introduces no error. A filtered distribution, similar to that of Cheng and Knorr, is 
introduced. Then, the equations which govern the evolution of the filtered dis- 
tribution are constructed from the Vlasov-Maxwell equations which govern the 
unfiltered distribution. With an appropriate choice of filter function, these “filtered 
equations” are only slightly more complicated to solve numerically and, given the 
lack of lilamentation in their solutions, these computations actually can be done 
considerably faster. The filtered Vlasov-Maxwell equations differ from the 
unfiltered ones only in the addition of a single differential term on the right side of 
the Vlasov equation which is reminiscent of but quite unrelated to the collision 
terms which have been added there in the past; there are no other modifications. 
This statement holds for any number of dimensions and for the full set of Maxwell’s 
equations governing the most general electromagnetic field. The field which is com- 
puted from the filtered equations is identical to that which is ordinarily computed 
from the unfiltered equations; there is no loss of information concerning the field 
evolution. The price that is paid is a loss of resolution in the velocity distribution. It 
is important to remember, however, that this loss of resolution does not in any way 
affect the evolution of the solution. The application of this method can be thought 
of as the act of viewing the evolution of the exact solution through a plasma detec- 
tor which has less than perfect resolution in velocity; the view may be imperfect but 
that does not change the solution. 

In this paper, the method for overcoming the velocity space lilamentation 
problem is introduced, some of its properties are discussed, and several examples of 
its application to numerical computations are given. For simplicity, all of this is in 
terms of a one-dimensional electron plasma model discussed previously by Klimas 
[ 171 and Klimas and Cooper [21]. As mentioned above, the method is completely 
generalizable up to, and including, the three dimensional electromagnetic case; the 
generalization is given in Appendix A. 

II. THE METHOD 

Consider the following collisionless, one-dimensional, model for an electron 
plasma: 
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aF aF 
~+u~-E(x,rg=O, 

du F(x, II, T), 

and 
aE ‘co 
aZ= -SC s dv vF(x, v, z) - U. 

(4) 

In this model there is assumed a passive neutralizing ion background with uniform 
normalized density, represented by the 1 in Eq. (4), and with possibly a uniform 
average ion flow speed, represented by the U in Eq. (5). The necessity of Eq. (5), as 
well as the close relationship between solutions of this system of equations and 
those of the more familiar Vlasov-Poisson system comprised of the first two of the 
above equations, are discussed by Klimas [ 171 and by Klimas and Cooper [Zl]. 
The filamentation problem is unchanged by the addition of Eq. (5). 

The method which will be considered here for overcoming the filamentation 
problem is based on the introduction of the filtered distribution function, 

F(x,u,t)=y dv’ &(v - v’) F(x, u’, z), (6) 
-a 

with the specific choice for the filter function, 

E(u) = (l/v, JZC) e-(1’2)(U’Uo)2, (7) 

in which v0 is a constant parameter which controls the width of the filter and 
therefore the velocity resolution which is retained in R Of course, in the limit 
v0 = 0, P= F. Other, more general, filter functions have been suggested by Cheng 
[22] and by Knorr [23]; these are discussed briefly in Appendix B. The discussion 
in this paper will be limited to the gaussian filter function. The equations which F 
satisfies can be constructed by applying the filtering operation defined above to Eqs. 
(3t(5) using the filter function defined in Eq. (7). The necessary calculations, 
generalized to the three dimensional electromagnetic case, are done in Appendix A. 
The results for the one-dimensional electron plasma model under consideration 
here are, 

aF aF 
- 

aT 
iT+vz-E(x,~)g= -u;- 

(7V ax au ’ 

du F(x, v, t), 

(8) 

and 
aE = -= 

i‘ aT px 
dv v F(x, v, t) - U. 
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It will be shown shortly that solutions of Eqs. (8t( 10) for F cannot contain 
velocity space lilamentation if u0 is properly chosen. Thus, the solution of the 
lilamentation problem which is proposed is to look for filtered solutions of Eqs. 
(8)-( 10) in lieu of unfiltered solutions of Eqs. (3)-(5). If the initial data (and 
possible boundary data) for the filtered and unfiltered solutions are related to each 
other by Eq. (6), then the filtered and unfiltered solutions will always be related to 
each other through Eq. (6) with each solution satisfying its respective system of 
equations. The fact that F is computed in no way changes the evolution of F. Thus, 
F can always be considered a liltered look at the exact solution. No error is 
introduced into the solution for F. 

Some important properties of the filtered solutions are discussed in the following: 

(a) An a priori Bound on 8&b. 

From Eq. (6), the derivative with respect to velocity of F can be written, 

(11) 

If F, is the maximum value of F which is imposed on the solution in the initial or 
boundary data, then, 

Thus, it is possible to make an estimate of the maximum velocity derivative which 
will occur in the solution and choose the velocity grid spacing accordingly. It is also 
possible to adjust the maximum derivative, and the grid spacing, through 
adjustments to the parameter uO. In some situations it may be advantageous to 
choose a large u0 and then use a coarse velocity grid. In such situations little may 
be learned about the distribution function because of the severe smoothing imposed 
on it. However, the computation would run relatively quickly with less real storage 
requirements and it would still yield the correct field evolution. In other situations 
it may be desirable to choose u0 somewhat smaller so that lilamentation is removed 
but the basic shape and evolution of the distribution is left. 

(b) The Field Solution is Invariant to Filtering 

With the symmetric and unit weight (J dv 2(v) = 1) filter function defined by 
Eq. (7), the zeroth and first moments of F and P are identical, i.e., 

jm dv F(x, v, T) = jm dv p(x, v, r) (13) 
-00 -00 
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and 

jm dv u F(x, v, z) = 1’” dv u F(x, u, 7). 
-cc -m 

(14) 

Therefore, the charge and current densities computed using either F or F are iden- 
tical and the field solutions, which depend on the distribution function only 
through the charge and current densities, are the same for the unfiltered solution 
and any of the filtered solutions with various vO. 

(c) Spatial Filamentation May Not Develop 

When acting on an arbitrary free streaming function of the type discussed in the 
introduction the second order differential term on the right side of Eq. (8) behaves 
like a diffusion operator with a time dependent diffusion coefficient; i.e., 

-Vi 
a2 YY(~-u~) “;a2 Y(~-vT) 

axav 7 au2 

= V; T a2 ~ir(~ - VT) 

ax2 . 
(15) 

This behavior leads to rapid relaxation of the free streaming solution of the filtered 
Eqs. (8)-( 10) toward a spatially uniform state with no velocity space lilamentation. 
For example, consider a solution which contains a single spatial Fourier mode. Let 
P(x, v, 0) = G(x, v) = G(k, a) exp(ikx). Then, 

j?((x, 0, z)=G(k, v-ik,~i~, 0) eik(r~or)-(1/2)(vOks)z~ (16) 

In the limit v,, = 0 this expression reduces to the standard free streaming solution 
with its unbounded velocity derivative. However, when v0 # 0 the rapid gaussian 
decay with increasing T prevents the unbounded growth of the derivative. Note that 
this gaussian decay is faster for larger k. In the filtered free streaming solution short 
spatial wavelengths decay away rapidly leaving a smooth solution in position as 
well as velocity. At least in the linear approximation, the more general solution with 
E # 0 can be considered the superposition of the free streaming solution and the 
usual linear approximation which will generally Landau damp for short spatial 
wavelengths. Thus, it is conjectured solutions which are filtered in velocity and 
which, as has been shown above, can be made as smooth as necessary in the 
velocity variable will also remain smooth in the spatial variable. 

III. APPLICATION TO THE FOURIER-FOURIER TRANSFORMED EQUATIONS 

In this section application of the method for overcoming velocity space filamen- 
tation to the Fourier-Fourier transformed version of Eqs. (8k( 10) will be dis- 
cussed. 

581:68/l-14 
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Knorr [ 131 originally introduced the Fourier-Fourier transformation method in 
a discussion of the one-dimensional Vlasov-Poisson system of equations. Klimas 
[17] later applied this method to the more general Vlasov-Maxwell system, Eqs. 
(3~(5) above. Application of this method to the filtered system, Eqs. (8))( lo), 
yields (in the notation of Klimas), 

aR aR 
2-l-m m = v(A,,, - Emd,,,) Kfi + e,,,, aI) 

with 

&,,A~) = 
K+.(O, 7) (mfn) m-n 

(17) 

(18) 
=o (m=n) 

and 

(19) 

in which the sum on the index, n, is implied. This is an infinite system of coupled, 
hyperbolic, semilinear, first order partial differential equations shown here for the 
mth spatial Fourier mode which is a function of time, r, and of velocity space wave 
number, v. In the limit E = 0 this system reduces to the system given by Klimas [ 171 
for the unfiltered case. Normally, initial value solutions are sought with the input 
function C,Jv, r) determined by possible nonperiodic boundary conditions on the 
spatial interval under consideration. 

From Eq. (17), the characteristics of the Fourier-Fourier transformed system of 
equations are straight lines on the (v, r)-plane; for initial value solutions these are 
given by v,(r) = v,(O) + mz. The development of velocity space tilamentation can 
be understood on the basis of these characteristics. An initial distribution which is 
smooth in velocity will not contain large values of v in its Fourier transform; its 
Fourier transform can be considered effectively a compact function of v about v = 0. 
But, with increasing r the R,,, can propagate from the vicinity of v = 0 to large 
values of v along the characteristics defined above, this propagation being par- 
ticularly rapid for the higher index (shorter wavelength) modes. For example, the 
free streaming solution in this Fourier transformed space for the mth mode is, 

&(v, z) = &(v - mz, 0). G-9) 

This propagation to large values of v in the Fourier transform leads to small scale 
structures in the velocity distribution; i.e., velocity space filamentation. 

The development of tilamentation on the velocity distribution, with its related 
propagation to large values of v in the Fourier-Fourier transformed distribution, 
can lead to serious computational diffkulty in the transformed space. To see this 
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consider Eq. (17). For the moment assume all the modes of e are zero and consider 
the unfiltered limit, E=O. The elements of the matrix A contain the field mode 
amplitudes. In the dimensionless units being used [17] the field mode amplitudes 
are almost always quite small; assume this to be the case here. Then, for reasonable 
values of v, the K,,, change slowly along their respective characteristics because the 
right side of Eq. (17) is small. In this case assume a numerical computation can be 
done on a reasonable grid. If, however, the 13, propagate to large v, then, from Eq. 
(17) they change rapidly along their characteristics even though the field mode 
amplitudes may still remain small. In this case, a liner grid becomes necessary to 
accommodate an accurate discrete computation. As the propagation to larger 
values of v occurs, the solution must be computed on a larger domain in the (v, r) 
plane with a liner grid within it. The number of grid points on which the solution 
must be computed may grow rapidly, leading quickly to an intractable com- 
putation. 

The practical solution in the past [Z] to this problem has been to limit a com- 
putation to a finite fixed interval in v and hope that the information which 
propagates through the boundary of this interval, and is therefore lost, will not 
significantly influence the further evolution of the solution in the vicinity of v = 0 
where the quantities of physical interest, the field mode amplitudes and the low 
order moments of the distribution function, are determined. In contrast, a filtered 
solution can be computed on a relatively small fixed interval in v with confidence 
that essentially no degradation of the solution accuracy in the vicinity of v = 0 will 
occur. From Eqs. (6) and (7), the relationship between the filtered and unfiltered 
K’s is given by, 

KAV, z) = f(v) K,(v, T), 

with 

(21) 

(22) 

and with v,, defined by Eq. (19). Thus, because of the rapid decay of f(v) for v P vO, 
truncation of the K,,, at an appropriately large value of v can be carried out with 
assurance that the Km will be as small as is necessary at the boundary to introduce 
negligible error elsewhere in the solution. In a computation of a filtered solution it 
is unnecessary to allow the domain of computation to expand in order to avoid the 
loss of significant information at the boundary of the domain; a filtered solution 
cannot propagate beyond several vO. Further, since the domain does not expand, 
the need for a finer grid as the solution is computed is also avoided. 

The method which is proposed here for overcoming the velocity space filamen- 
tation problem in the Fourier-Fourier transformed space is to compute solutions of 
the filtered Eqs. (17) through (19) on a fixed interval in v whose size is chosen large 
compared to v0 so that the loss of information at the boundary of the interval is 
negligible. The price that is paid in using this method is the calculation of the extra 
diagonal terms in the matrix product on the right side of Eq. (17). In general this is 
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a small additional computation compared to the necessary convolution sum which 
must be done in any case. It appears that application of this filtering method to any 
approach for computing Vlasov solutions which involves a spatial Fourier series 
expansion of the distribution function would lead to a small additional com- 
putation effort per grid point. In the Fourier-Fourier transform approach the 
reduction in computation domain and the avoidance of unreasonably line grids 
more than compensates for the extra computational effort which is needed. 

IV. EXAMPLES 

In this section two comparisons of one-dimensional unfiltered and filtered 
Vlasov-Maxwell solutions will be given; these are periodic solutions to Eqs. 
(17)-( 19) with E = 0 and E # 0, respectively. The method used for generating these 
solutions is as discussed earlier by Klimas [ 173 except the computations are done 
on a fixed interval in v and the matrix, A, in the paper by Klimas is generalized to 
include the diagonal terms indicated on the right side of Eq. (17) when E # 0. A dis- 
cussion will be given of, first, a nonlinear Landau damping solution which exhibits 
strong velocity space filamentation, and second, a bump-on-tail unstable solution 
which exhibits weak lilamentation only on a limited portion of the velocity dis- 
tribution. 

(a) Nonlinear Landau Damping 

The nonlinear Landau damping solution which will be discussed has been con- 
sidered by Klimas [17], by Cheng and Knorr [20], and by several other authors 
listed in Cheng and Knorr. This solution is characterized by an unusually strong 
initial field. The initial field energy in the plasma is equal to the initial thermal 
energy and it is carried in a single spatial Fourier mode, the fundamental mode, 
whose wavelength is the maximum in the plasma. The initial state of the plasma is 
specified by, 

F(x, 0, 0) = J% (1 - cos nx) eP(1’2)(2nU)2. (23) 

In the Fourier-Fourier transformed space, this initial state translates into, 

&( v, 0) = e - w2w2P, (24) 

K,(v, 0) = K- ,(v, 0) = $K,(v, O), (25) 

and all other K,(v, 0) = 0. Thus, this is an initial state of the type described above 
as effectively a compact function of v in the transformed space. 

Figure 1 shows the evolution of the real part of K,(v, r), a dominant Fourier 
mode in the solution, for 0 < t < 40 and for 0 < v < 30. After a short transient, the 
most important feature in this Fourier mode is the free streaming wave (in the sense 
of Eq. (20)) propagating, from the compact initial data, in the characteristic direc- 
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FIG. 1. Initial evolution of the real part of K,(v, t) for the unfiltered Landau damping solution. 

tion of this mode. It is interesting that there is also a series of free streaming waves, 
following the first large one, which are not negligible in magnitude compared to the 
series of standing waves in the vicinity of v = 0. The physical description of the 
plasma is determined by the evolution of these standing waves in the “interaction 
region” near v = 0. For example, an electric field mode is given by the value of the 
related Fourier mode at v = 0 and all of the moments of a mode of the velocity dis- 
tribution are given by the derivatives with respect to v, at v = 0, of the related 
Fourier mode. But, in Fig. 1 the Fourier mode itself is dominated by the free 
streaming components outside of the interaction region. This solution was com- 
puted on a fixed interval in v bounded by the cutoff at v= 30. It is clear that a 
significant amount of information has been lost through the cutoff boundary by the 
time r = 40. The consequences of this loss of information in the interaction region 
later in the solution are unknown. 

The Fourier mode shown in Fig. 1 is part of an unfiltered solution. Now consider 
Fig. 2 which shows the same Fourier mode in a filtered version of the same 
solution. This is not to say that the Fourier mode shown in Fig. 2 was obtained by 
filtering that shown in Fig. 1. Figure 2 shows the real part of R,(v, r) computed 
with Eqs. (17)-( 19) using v0 = 5 and using initial data related through Eqs. (21) 
and (22) to the unfiltered initial data given by Eqs. (24) and (25). In this case the 
large free streaming part of the Fourier mode has been suppressed while the 
standing waves in the interaction region have been left relatively unaffected. In the 
absence of the free streaming part of the mode very little information has been lost 
at the cutoff boundary where truncation of the solution is then acceptable; expan- 
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FIG. 2. Initial evolution of the real part of K,(v, T) for the filtered Landau damping solution 

sion of the computation domain to prevent information loss at the cutoff boundary 
is unnecessary. The relative simplicity of computing the filtered solution, compared 
to the unfiltered one, should be readily apparent following an examination of these 
two figures. Keep in mind, the Fourier mode shown in Fig. 1 is the slowest to 
expand of all the Fourier modes in the solution. The domain on which the 
unfiltered solution must be calculated, to assure the accuracy of the solution for 
large r, is much larger than the one on which the filtered solution must be 
calculated. Furthermore, as discussed above, the grid which is used within the 
domain of computation for the filtered solution can be made much coarser than 
that used within the larger domain of computation associated with the unfiltered 
solution. The result is, the number of grid points on which the filtered solution must 
be computed is vastly reduced. 

The filtered and unfiltered Fourier modes are related by Eqs. (21) and (22). Since 
&(O) = 1, the filtered and unfiltered Fourier modes should be identical at v = 0 and, 
therefore, the electric field modes calculated in either case should also be identical. 
Figures 3a and b provide a comparison between the fundamental field modes com- 
puted from a related pair of unfiltered and filtered nonlinear Landau damping 
solutions. The unfiltered solution is the one presented earlier by Klimas [ 171; it is 
identical to the unfiltered solution discussed above except that it was computed on 
an expanding domain with no loss of information at the cutoff boundary. Con- 
sequently, the size of the computation domain and the number of grid points within 
it grew very large, the computation become unreasonably slow, and it was stopped 
at T z 41. The filtered solution is the one discussed above. Over the range of t in 
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Tli” TAU 

FIG. 3. Evolution with time of the absolute value of the fundamental field mode amplitude from the 
(a) unfiltered and (b) filtered Landau damping solution. 

which the comparison can be made, it is difficult to find a difference in the two 
representations of the fundamental mode. The same can be said of the m = 2 mode 
shown in Figs. 4a and b. Figures 5a and b, which contain the m = 4 mode, show 
that some differences do sometimes emerge; this example is representative of the 
worst cases found so far. In general, when these differences have been found, they 
have been found in the relatively weak field modes. The accuracy demonstrated by 
Figs. 3a and b, as well as Figs. 4a and b, is representative of the results which have 
been found for the more dominant field modes. 

Figures 6a and b provide a comparison of the space averaged (m = 0) velocity 
distributions computed from the unfiltered and filtered Landau damping solutions 
at z = 35. A comparison of Fig. 6a with the results of Cheng and Knorr [20], who 
used a very different integration method to obtain their results, shows that the com- 
plicated tilamentation which has developed on the distribution has been computed 
accurately. The complexity of the distribution function shown in Fig. 6a is not an 

0. 20. 30. 40. w. bll. 0. io. 20 30. 40. 50. 60. 

TA” TA” 

FIG. 4. Evolution with time of the absolute value of the WI = 2 field mode amplitude from the (a) 
unfiltered and (b) filtered Landau damping solution. 



214 ALEXANDER J. KLIMAS 

TA” TA” 

FIG. 5. Evolution with time of the absolute value of the M = 4 field mode amplitude from the (a) 
unfiltered and (b) filtered Landau damping solution. 

artifact of the numerical integration; it is an accurate representation of a Vlasov 
solution. The choice, v0 = 5, which was made to compute the filtered Landau damp- 
ing solution, leads to a velocity space filter width, u0 = 0.064. This width is sufficient 
to completely remove the filamentation from the velocity distribution and leave the 
smooth filtered distribution shown in Fig. 6b. In this case, a great deal of infor- 
mation has been lost. On the other hand, the result shown in Fig. 6b, rather than 
6a, may be more representative of an experimental measurement of the velocity dis- 
tribution using a detector with finite velocity resolution. It is not at all clear that 
smoothing away the lilamentation has led to a less useful result. And, it should be 
remembered, the removal of the lilamentation has not introduced any error in the 
computation of the Vlasov solution. 

(b) Bump-on- Tail Instability 

In the following, a comparison will be given between two filtered representations 
and one unfiltered representation of a bump-on-tail unstable Vlasov solution. The 

I 0 -0 8 -0.6 -0 4 -0.2 -0.0 0.2 0 4 0.5 0 8 ! 0 -1.0 -0.8 -06 -0.4 -0.2 -0.0 0.2 0.4 06 0.8 IO 

“ELK I TI “ELOClTY 

FIG. 6. Space. averaged velocity distribution function for the (a) unfiltered and (b) tiltered Landau 
damping solution at T = 35. 
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unfiltered solution has been discussed earlier by Klimas [24]; it was computed on a 
domain which generally expanded with the solution but which was occasionally cut 
back when this could be done with only a small loss of information at the cutoff 
boundary. Although this is not as desirable a comparison as that in the previous 
section where the unfiltered solution was computed with no loss of information, it is 
still considered a valid one because of the care which was exercised to minimize the 
loss of information. This is a periodic solution, therefore the quantity, 

I(d=Cj”’ dv IK,,(v, d*, (26) 
m - VI. 

should be a constant in r for the unfiltered representation unless the solution 
propagates through the cutoff boundaries at fv, and is lost. For the unfiltered 
solution which will be discussed here Z(z) decreases with increasing r due to the loss 
of information which occurred when the cutoff boundary was cut back. But, Z(r) 
was held to within 0.015% of its original value; the loss of information was kept 
small. 

Figures 7a, b, and c show the initial space averaged velocity distributions which 

FIG. 7. Initial space averaged velocity distribution function for the (a) unfiltered, (b) first liltered, 
and (c) second liltered bump-on-tail solution. 
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were used for the unfiltered solution, the first filtered solution, and the second 
filtered solution respectively. The first filtered solution was computed using a 
narrow velocity filter (u, = 0.016; v0 = 20) and the second filtered solution was com- 
puted using a broad velocity filter (u,=O.O64; vg= 5). The difference in velocity 
resolution is readily apparent in Figs. 7b and c. The first filtered initial distribution 
is visually close to the unfiltered initial distribution. But, the second initial dis- 
tribution is considerably degraded. In this case the bump on the distribution has 
been almost completely removed, and the distribution looks as though it should be 
stable. It will be shown shortly that all three solutions exhibit the same unstable 
evolution. Earlier, it had been shown that the term on the right side of Eq. (8) acts 
as a diffusion operator when acting on a free streaming solution. In this case its 
behavior is very different, In a fascinating manner, that term somehow provides the 
information which is necessary to recognize the initial distribution shown in Fig. 7c 
as an unstable distribution even though the filtering of the initial distribution has 
apparently removed that information. 

The evolution of the fundamental electric field mode for all three solutions is 
shown in Figs. 8a, b, and c. The phase velocity of this mode was adjusted so that it 

FIG. 8. Evolution with time of the absolute value of the fundamental field mode amplitude from the 
(a) unfiltered, (b) first filtered, and (c) second filtered bump-on-tail solution. 
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lies on the rising portion of the bump on the initial unfiltered space averaged 
velocity distribution. Thus, this mode exhibits the classical initial transient, leading 
to linear growth, and then to saturation due, in this case, to trapping. Note that all 
three solutiops are in excellent agreement, they all obviously exhibit the same 
unstable evolution, including the second filtered solution which, as discussed in the 
previous paragraph, follows from an initial state that does not appear unstable. 

The evolution of the next mode (m = 2) for all three solutions is shown in Figs. 
9a, b, and c. The initial phase velocity of this mode lies on the core of the dis- 
tribution, and so, it Landau damps. However, at z N 70 the amplitude of this mode 
becomes so small, while the amplitude of the growing fundamental mode has grown 
so large, second order wave-wave coupling begins to dominate the linear waveepar- 
title interaction and this mode reverses its evolution to grow at twice the growth 
rate and with twice the frequency of the fundamental mode. Saturation of this mode 
occurs when the fundamental mode saturates. All three representations of this mode 
are in excellent agreement over the course of this evolution. Only the second filtered 
solution, with its broad velocity space filter, differs slightly following saturation. 
Higher order, less significant, modes have been found to exhibit similar agreement; 
excellent up to saturation and then small differences in detail. 

0 50. 100. 150. 200. 250. 300. 

IA” 

FIG. 9. Evolution with time of the absolute value of the m=2 field mode amplitude from the (a) 
unfiltered, (b) first liltered, and (c) second filtered bump-on-tail solution. 
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Figures lOa, b, and c show the space averaged velocity distribution functions for 
all three solutions at 7 = 200. At this time the instability is just about to saturate. 
The unfiltered representation shows that the bump on the distribution has been 
reduced considerably. The only evidence for velocity space filamentation in this 
solution can be found here superposed on the remaining portion of the bump. This 
filamentation persists in this region of velocity for as long as the solution has been 
computed (up to 7 = 600) but never develops elsewhere. Nevertheless, unless a very 
clever numerical code were developed, a relatively fine velocity grid over all 
significant values of velocity, or as in this case, a relatively large computation 
domain in the transformed space, is necessary to compute this solution accurately. 
Figure lob shows that the narrow width of the velocity filter used to obtain the first 
filtered solution leaves the smooth portions of this velocity distribution relatively 
unchanged but it does smooth away the filamentation in the vicinity of the bump. 
Thus, for this solution, were it being computed in velocity space, a coarser grid 
appropriate for the majority of the distribution would be more appropriate. Figure 
1Oc shows that the second filtered velocity distribution has hardly evolved, and that 

field output is sufficient to determine whether or not a more 

FIG. IO. Space averaged velocity distribution function for the (a) unfiltered, (b) first filtered, and (c) 
second filtered bump-on-tail solution at T = 200. 
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detailed examination is warranted. For example, a sequence of solutions calculated 
with the variation of a parameter could be done quickly to find cases which might 
exhibit a particular physical behavior and, therefore, be chosen for further study. 

V. DISCUSSION 

It is unfortunate that a direct comparison of the several examples given in the 
previous section for relative running speeds cannot be done. The older unfiltered 
solutions were computed on an IBM 360-91 while the new filtered solutions were 
computed on an IBM 3081. Nevertheless, various pieces of information can be com- 
bined to construct a reasonably reliable estimate of the relative running speeds 
which would have been attained if the computations had all been done on the same 
machine. 

Following installation, the IBM 3081 was tested for running speed, relative to the 
IBM 360-91, using a variety of numerical codes. It was found that the running 
speeds, while depending on the particular code, were approximately equal. If the 
assumption is made that the running speeds for the two machines are equal for the 
codes under consideration here, then it can be concluded the unfiltered Landau 
damping solution took approximately a factor of ten longer to compute than the 
filtered Landau damping solution and the run times for the unfiltered, first filtered, 
and second filtered bump-on-tail solutions are approximately in the ratios 11 : 3 : 1. 
These run time ratios are probably quite close to the ratios which would have been 
found if these solutions were all obtained on the same computer; they are 
corroborated by other considerations. For example, an estimate of the relative run 
times can be made by simply comparing the number of grid points which were 
necessary to compute the unfiltered and filtered solutions. The numbers of grid 
points for the two Landau damping solutions are in the ratio 12 : 1, and the num- 
bers for the bump-on-tail solutions are in the ratios 14:4: 1. These ratios are in 
reasonable agreement with those attained by simply comparing run times for the 
different computations ignoring the change in computers. Further, the relative run 
times and number of grid points for the two filtered bump-on-tail solutions, which 
were both computed on the same computer, can be compared. The relative run 
times are in the ratio 2.5: 1 while the relative number of grid points are in the ratio 
3.1: 1. Thus, this method of estimating the relative run times using the relative num- 
ber of grid points seems reasonably accurate. It appears that approximately a factor 
of ten increase in computation speed can be expected unless a narrow velocity filter 
is used to preserve some of the liner detail in the velocity distribution function. 

Considerable savings in real machine memory can be attained by computing the 
filtered solutions in lieu of the unfiltered ones. Assuming that the solution is com- 
puted by marching forward in time with only a few time steps retained in machine 
memory at any point in the computation, then the amount of storage required for 
an unfiltered solution, relative to a filtered solution, is determined by the ratio of 
the widths, in v, of the two computation domains as well as, of course, the grid 
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spacing within the computation domains. The unfiltered bump-on-tail solution 
required 8 times the memory necessary for the first filtered solution, with its narrow 
velocity filter, and it required 25 times the memory necessary for the second filtered 
solution. For the Landau damping solutions this ratio got as large as 30 before the 
computation of the unfiltered solution was finally stopped. The computation of the 
filtered Landau damping solution was done with approximately 300 grid points per 
time step per spatial Fourier model. Certainly, fewer grid points were necessary. 
Figures 1 and 2 can be examined to see the resolution of the unfiltered and filtered 
solutions which was attained. In those figures, of the grid points on which the 
solutions were actually computed only every eighth in v and every sixteenth in t are 
plotted. 

VI. CONCLUSION 

A method for overcoming the velocity space filamentation problem in 
collisionless plasma models has been introduced. In this method solutions of the 
filtered Vlasov-Maxwell equations, in lieu of the Vlasov-Maxwell equations them- 
selves, are computed. It has been shown that this method introduces no error in the 
Vlasov-Maxwell solutions, it yields the exact field solutions with no modifications, 
and it produces filtered velocity distribution functions. It has been further shown 
that with an appropriate choice of filter width velocity space lilamentation cannot 
develop in the filtered solutions. It has been also conjectured that position space 
lilamentation will not develop in the filtered solutions. 

Several computations of both unfiltered and filtered solutions have been dis- 
cussed. The comparisons of these unfiltered and filtered solutions which have been 
made show that the method presented here for overcoming the velocity space 
lilamentation problem is an attractive one in practice. The computed field solutions, 
for the unfiltered and filtered solutions, agree in considerable detail with each other. 
The velocity distribution functions computed using the filtered equations are indeed 
filtered representations of the solutions computed using the unfiltered equations; 
i.e., the method, in practice, does not introduce noticeable error in the evolution of 
the velocity distribution. Finally, large reductions in computation time and com- 
puter memory requirements have been demonstrated. 

APPENDIX A: GENERALIZATION TO AN ELECTROMAGNETIC FIELD 
IN THREE DIMENSIONS 

In this Appendix the filtered Vlasov-Maxwell equations will be constructed for a 
distribution function and electromagnetic field in three dimensions. The results will 
be similar to those given above for the one-dimensional electron plasma model. It 
will be shown that the filtered equations are exactly the same system of equations as 
the unfiltered ones except for the addition of a single term on the right side of the 
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Vlasov equation which is a generalization of the one-dimensional scalar form of this 
term given above. The electromagnetic field will be shown to be invariant to the 
filtering process and the absence of velocity space tilamentation on the filtered 
velocity distribution will be demonstrated. 

The filter function which is used to construct the filtered distribution function 
should always be an even function of velocity with unit integrated weight in 
whatever number of dimensions are involved. In this appendix a simple gaussian 
will be used; in Appendix B more general filter functions will be discussed. 
Therefore, in this case, 

i(v) = (l/u, fi)’ e - (‘/*NV. V/d), (AlI 

with the consequence, 

aw v&(v) = 4; 7’ (A21 

The filtered velocity distribution is defined through 

F(v) = & * FE I d3u’ &(v -v’) F(v’) 

(A3) 

= 
s 

d3u’ &(v’) F(v - v’), 

in which only the velocity dependence of the distribution functions has been 
explicitly exhibited. Just as in the one-dimensional case, an a priori bound can be 
placed on the derivative of F with respect to velocity thereby precluding the 
development of filamentation. Let ri be an arbitrary unit vector and consider, 

(A4) 

This is the derivative with respect to velocity of F in an arbitrary direction. Using 
the method outlined above for obtaining Eq. (12) from Eq. (1 l), it can be shown 
that, 

in which F,,, is the maximum value of F which is imposed on the solution in the 
initial or boundary data. The maximum velocity derivative which can occur in the 
filtered solution can be estimated and adjusted, through the choice of the parameter 
u,,, before computing the solution. The degree to which tilamentation is allowed to 
develop can be controlled by the choice of Q,. 
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The starting point for the construction of the filtered equations is the Vlasov 
equation, 

aF ;;;+rg-JE+fxB).$O, (A6) 

for the electron velocity distribution function, plus Maxwell’s equations for the elec- 
tromagnetic field. (If other particle species were included, then the calculation 
which will be done in the following could also be done, with no changes, for a mul- 
tispecies Vlasov equation.) Because the filter function is an even function of velocity 
and has unit weight under integration over velocity, the zeroth and first moments of 
the velocity distribution are invariant to filtering; i.e., 

j- d3v F(x, v, t) = j” d3v F(x, v, t) (A7) 

and 

j” d3v vF(x, v, t) = 1 d3v vF(x, v, t). (A81 

Thus, the charge and current densities which enter Maxwell’s equations can be 
computed using the filtered velocity distribution or the unfiltered one with no 
change in the results. Maxwell’s equations, and the field solutions, are unaffected by 
the shift to the filtered velocity distribution function. 

The filtered Vlasov equation is constructed by applying the convolution 
integration exhibited in Eq. (A3) to the Vlasov equation. This treatment of the first 
term in the Vlasov equation quickly yields, 

(A9) 

From the second term, 
- 

f*v.g=v$ld’v’f(v’)v’F(v-v’). 

It is at this point that the choice of a gaussian for the filter function becomes 
crucial. With this choice, the integral term in this equation can be reduced further 
to a simple form involving F and not F. Then, the filtered Vlasov-Maxwell 
equations become a closed system for F and the electromagnetic field. In Appendix 
B more general filter functions will be discussed, but the generalizations considered 
will be limited to retain this property. With the gaussian choice Eq. (A2) can be 
used to reduce Eq. (AlO) to, 

& v eF=, !E+v* a a F 
* 'ax 'ax --- 3 ( > 0 ax av (All) 
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a differential form acting on F only. From the third term in the Vlasov equation, 
involving the electric field, it is easy to show that, 

- 
f*E.;=E.g. 

Finally, from the fourth term, 

- i d3vf &(v’)(v’ x B) . ““1, “). 

b412) 

(A13) 

Once again, the choice of gaussian filter function is crucial for reducing the integral 
term in this equation further and the more general filter functions which will be dis- 
cussed in Appendix B will be chosen to retain the reduction about to be attained 
here. With Eq. (A2), this integral term can be rewritten as, 

and then, through integration by parts, as, 

(A14) 

(A15) 

which always yields a zero because, the differential operator, 

(A161 

yields zero when acting on any differentiable function of v’. Thus, the rather surpris- 
ing result, 

- 

&* (vxB).;=(vxB)$, 

and finally, the filtered Vlasov equation, 
- 

;+v.!&;(E+;xB).$ 

(A17) 

(A181 

581/68/l-15 
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The simplicity of this result is remarkable. Equations (A6) and (Al 8) should be 
compared to see the modification of the Vlasov-Maxwell system of equations which 
occurs under filtration. Maxwell’s equations, and the field solutions, are unchanged 
while a single differential term is added to the right side of the Vlasov equation. If 
the initial and boundary data for F and F are chosen to satisfy Eq. (A3), then this 
additional term acts to ensure the solutions of Eqs. (A6) and (A18) also satisfy 
Eq. (A3). 

APPENDIX B: GENERALIZED FILTER FUNCTIONS 

Cheng [22] and Knorr [23] have pointed out that alternative theories for 
velocity-filtered distribution functions can be developed by using other than the 
simple gaussian filter functions which have been employed in this paper. Their ideas 
for producing these alternative theories will be discussed here. It is beyond the 
scope of this paper to determine the most general acceptable filter function. Instead, 
the possibility of generalization will be demonstrated and, in particular, it will be 
shown that the filter function which Cheng and Knorr used in their related work 
[20] is one of the possible generalizations. 

To retain the property that the field portion of a Vlasov-Maxwell solution be 
unaffected by the transition to the filtered Vlasov-Maxwell solution it is merely 
necessary to restrict the choice of filter function to one that is even in velocity and 
has unit weight under velocity integration. The more difficult restrictions on the 
choice of filter function follow from the decision to retain, as far as possible, the 
simplicity of the results which have been attained in Appendix A using the gaussian 
filter function. In particular, the result shown in Eq. (A17) as well as the reduction 
of the integral term shown in Eq. (AlO) to a form similar to that shown in Eq. 
(Al 1) should be required. Then the filtered Vlasov-Maxwell equations would once 
again be identical to their unfiltered counterparts except for the addition of a single 
term on the right side of the Vlasov equation which would operate solely on p, not 
F. It is the property of the gaussian function given by Eq. (A2) which assures this 
result. A possible generalization of Eq. (A2) is given by, 

v&(v)= -a-$ f.$ ( ) 
n-1 

&(v), (Bl) 

in which a is a constant parameter and n is any positive integer greater than zero; 
the special case given by Eq. (A2) can be regained by setting n = 1. With this 
generalization, Eq. (Al 1) is replaced by, 
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and Eq. (A17) is unchanged. Therefore, in terms of the goals specified above this is 
an appropriate generalization. The properties of the filter functions which are the 
solutions of Eq. (Bl) can be best understood by considering their Fourier trans- 
forms. Equation (Bl) can be Fourier transformed and, with an appropriate 
adjustment to CI, the result can be written as, 

a&(v)= --n (;)(Ly)” ’ &(“), 

wd 
033) 

in which v is the Fourier variable. Due to the restriction to unit weight filter 
functions, the solution of Eq. (B3) which is desired is given by, 

Again, the choice n = 1 leads to the gaussian filter function which has been dis- 
cussed in this paper in both one and three dimensions. In one dimension, the choice 
n = 2 leads to the filter function used by Cheng and Knorr [20]. 

The higher order filter functions obtained with increasing n have the disadvan- 
tage that as n increases so does the order of the differential operator which is given 
in Eq. (B2) and which will ultimately appear on the right side of the Vlasov 
equation. However, the higher order filter functions are also attractive in some 
ways. For any given value of n, all of the velocity moments of F, from moment zero 
through moment 2n - 1, are invariant to the filtering process. This invariance could 
be advantageous in situations where the moment expansion of F is significant. 
Further, in the Fourier transformed velocity space the more rapid decrease of the 
filter function with increasing magnitude of v which is attained with larger values of 
n makes the propagation of information to large values of v even more difficult than 
in the case of a gaussian filter function. For these reasons it is thought that the 
higher order filter functions should be investigated in the future. At present, no 
other generalizations of the filter function which satisfy the requirements stated 
above have been found. 
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